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A comparison is made between Pade� and Pade� -type approximants. Let Qn be the
n th orthonormal polynomial with respect to a positive measure + with compact
support in C. We show that for functions of the form

f (z)=| w(t)
z&t

d+(t),

where w is an analytic function on the support of +, Pade� -type approximants with
denominator Qn give a successful and, in general, better approximation procedure
than Pade� approximation. � 1996 Academic Press, Inc.

1. INTRODUCTION

In any approximation problem there are three main questions.

Q1. For how large class of functions may the approximation scheme
be applied?

Q2. How easily and within what computational accuracy may the
approximants be constructed?

Q3. Which is the theoretical accuracy (rate of convergence)?

We want to compare Pade� and Pade� -type approximants in a discussion
on these three questions. First, however, we define our approximants. We
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shall use approximants interpolating at infinity to a function of one com-
plex variable which is analytic at infinity.

1.1. Definitions
Let f be analytic at infinity. The diagonal Pade� approximant (PA) at

infinity of order n of f is the unique rational function pn�qn such that pn(z)
and qn(z) are polynomials in z, qn(z)�0, the degree of qn , deg qn , is at
most n, and

qn(z) f (z)& pn(z)=O(z&n&1), as z � �,

where the right-hand side denotes a power series in z&1 with lowest order
term of degree n+1 or higher.

The definition of PAs means that we determine pn and qn by interpolat-
ing at infinity to f of as high degree as possible. If instead we fix some or
all of the poles of the approximant in advance we get Pade� -type
approximants instead of PAs. In this paper we shall consider only the case
when all poles are preassigned. More precisely, let Qn �0, be a given
polynomial in z of degree at most n. The Pade� -type approximant (PTA)
at infinity of order n of f with preassigned denominator Qn (i.e. with
preassigned poles at the zeros of Qn), is the unique rational function Pn �Qn

such that Pn is a polynomial in z and

Qn(z) f (z)&Pn(z)=O(z&1), as z � �.

The definitions mean that the Pade� numerator pn and the Pade� -type
numerator Pn are the polynomial parts of the Laurent series at infinity of
qn f and Qn f, respectively. Observe that in general pn and Pn are polyno-
mials of degree n. In the theorems in this paper the function f is zero at
infinity which means that pn and Pn have degree at most n&1. We shall
indicate this by using the notation pn&1 and Pn&1.

1.2. Discussion

Q1: The advantage of PTAs compared to PAs is evident. One of the
few general results where diagonal PAs guarantee convergence is Markov's
theorem for functions of the type

f (z)=|
2

d+(t)
z&t

, 2/R, 2 compact interval, (1)

where + is a positive measure on 2. But PTAs guarantee convergence for
the whole class of functions analytic in C� "2. In fact, if in the definition (1)
of f we replace 2 by some curve in C or even by an arbitrary regular com-
pact set K/C, and we allow + to be a complex measure, we again have
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a convergence result for PTAs but not for PAs. In particular, f may be a
Cauchy type integral. Moreover, we have convergence for the whole class
of functions analytic in the unbounded component of C� "K, and even for
the class of meromorphic functions in C� "K (see [8], p. 200, Theorem IIIb
for analytic functions and [3], Theorem 3 for the general case).

Q2: We have already remarked that both for PAs and PTAs the
numerator of an approximant of a function f is the polynomial part of
the Laurent series at infinity of the product of f and the denominator of the
approximant. Hence, the calculation of the numerator of an approximant
is a quite easy and stable procedure.

The core of the problem of constructing the n th diagonal PA is the
numerical solution of a system of n linear equations in order to find the
n+1 coefficients of the denominator qn . If the determinant of this system
is close to zero, this numerical solution is an ill-posed problem. Note also
that if the determinant is zero we may get a wrong result after rounding off
(see [4], p. 61). On the other hand, if we use PTAs, for example for the
case of functions analytic in C� "2, 2=[&1, 1], we can use, in particular,
any classical system of orthogonal polynomials on 2 (Legendre,
Chebyshev, etc.) (see [8], p. 200, Theorem III b or [3], Theorem 3). We
have these polynomials ready beforehand and so it takes no time or effort
to calculate the denominator of the PTAs.

Q3: The principal question in any approximation problem is how to
use the information available in the optimal way. As pointed out in [4],
p. 63, the actual calculation of the PAs of f is usually the least time con-
suming part of a complete calculation. Rather, it is the computation of the
power series coefficients of f to high accuracy which is expensive in com-
puter time.

Ordinary PAs pn&1 �qn of the function (1) give the following rate of
convergence

lim sup
n � � } f (z)&

pn&1(z)
qn(z) }

1�n

�e&2g0(z) (2)

locally uniformly (on compact subsets) in 0=C� "2, where g0(z) is the
Green function with pole at infinity of 0. If we consider PTAs Pn&1 �Qn of
the same function (1) they give the rate (see [8], p. 200 or [3],
Theorem 3)

lim sup
n � � } f (z)&

Pn&1(z)
Qn(z) }

1�n

�e&g0(z) (3)

locally uniformly in 0=C� "2.
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Note that the right-hand side of (2) differs from the right-hand side of
(3) by a factor 2 in the exponent, and that it may seem that ordinary PAs
give twice as high rate of convergence as PTAs. However, the basic fact
here is that to construct the diagonal PA of order n of f we need to know
the first 2n power series coefficients of f but to construct the PTA of order
n we need just the n first coefficients of f. Consequently, if we have informa-
tion about the first 2n coefficients of f, we can either construct the ordinary
diagonal PA of order n or the PTA of order 2n. They provide, as (2) and
(3) show, the same rate of convergence. Note also that, as we have dis-
cussed above, calculating PTAs on a computer is much easier than
calculating PAs.

But this is not the end of the story on Q3. The surprising fact is that for
quite general classes of functions PTAs give better rate of convergence than
PAs. This is the consequence of our main results, Theorem 1 and 2 in
Section 2 (see also Remark 7). In Theorem 3 in Section 2 we make a
further comparison between PAs and PTAs.

This paper is the third in a series of papers by the authors devoted to
showing that PTAs are useful complements and substitutes to PAs. The
first two papers are [2] and [3] and further papers are under preparation.

2. RESULTS

2.1. PTAs provide better rate of convergence in particular for the
following class of Markov functions

f (z)=|
2

w(t)
z&t

dt, 2=[&1, 1], (4)

where the weight w is an entire function (see Theorem 1 below). In this
case as denominators of the PTAs Pn&1 �Qn we use the orthonormal
polynomials Qn with respect to Lebesgue measure dt on 2, the so called
Legendre polynomials. Observe that w may change sign on 2. The typical
case considered in rational approximation is when w is a polynomial.

Theorem 1. Let Qn be the orthonormal Legendre polynomial of degree
n and let Pn&1 �Qn be the PTA of order n of the function (4) with preassigned
denominator Qn . Suppose that w in (4) is an entire function. Then

lim sup
n � � } f (z)&

Pn&1(z)
Qn(z) }

1�n

�e&2g0(z) (5)

locally uniformly in 0=C� "2.
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Remark 1. If we compare (5) with (2) we note that PTA and PA of
order n give the same rate of convergence. However, as we have mentioned
above to construct PTA and PA we need n and 2n coefficients, respectively.

Theorem 1 remains valid if in (4) we replace w(t) dt by w(t) d+(t), where
+ is a positive measure with compact support in 2, if we let Qn be
orthonormal polynomials with respect to +. In this form the theorem
means that the polynomials Qn serve not only the Markov function (1)
generated by d+(t) but also with the same success the whole class of
Markov functions generated by real measures w(t)d+(t) where w is an
entire function. If, in particular, + is any classical measure we obtain classi-
cal orthonormal polynomials Qn as denominators of the corresponding
PTAs. Furthermore, Theorem 1 remains valid also if we replace the inter-
val 2 in (4) by an arbitrary compact set in C. More precisely, we shall
prove the following theorem which contains Theorem 1 as a special case

Theorem 2. Let

f (z)=|
w(t)
z&t

d+(t) (6)

where w is an entire function and + a finite positive Borel measure on C with
compact support, supp +. Let Qn be the orthonormal polynomial of degree n
with respect to +, and Pn&1 �Qn the PTA of order n of f with preassigned
denominator Qn . Finally, let 0 be the unbounded component of C� "supp +.
Then (5) holds locally uniformly in C� "Co(supp +) where Co(supp +) denotes
the convex hull of supp +. Furthermore,

lim inf
n � � } f (z)&

Pn&1(z)
Qn(z) }

1�n

�e&2g0(z) in 0. (7)

In (5) and (7) g0(z) denotes the generalized Green function if supp + has
positive logarithmic capacity and 0 is an irregular domain. If supp + has
capacity zero, g0(z) is infinite everywhere in 0.

There is a version of Theorem 2 also when w is not an entire function;
see Remark 7 in Section 3.

Remark 2. It is not possible to replace limes inferior by limes superior
in (7). This depends on the fact that Qn may have zeros in 0 & Co(supp +)
if that set is non-empty (see for instance [7], p. 31).

Remark 3. For functions of the form (6) we can no longer expect
local uniform convergence in 0 for the diagonal PAs. In fact, consider
the function (6) where supp + = 2 = [&1, 1], d+(t) = dt�- 1&t2, and
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w(t)=(t&a1)(t&a2) with aj=sin ?:j , j=1, 2, and 1, :1 , :2 rationally
independent real numbers. In this case w changes sign in (&1, 1) and Stahl
[6] has proved that the sequence of diagonal PAs has poles asymptotically
dense in C. Hence, the diagonal PAs do not converge locally uniformly
anywhere in 0.

2.2. We now return to a function f given by (4) with a fixed weight w.
Let Pn&1 �Qn be the PTA of order n of f with preassigned denominator
Qn where Qn is the orthonormal Legendre polynomial of degree n. We
introduce the error

Rn(z)= f (z)&
Pn&1(z)

Qn(z)
. (8)

By rn(z) we denote the error (8) for the special case of the function (4)
when w(t)#1. In this case the PTAs introduced coincide with ordinary
PAs. The following theorem asserts that the errors Rn(z) and rn(z) are of
the same order.

Theorem 3. If Rn(z) and rn(z) are the errors introduced above and w is
an entire function, then

lim sup
n � �

|Rn(z)&w(z) rn(z)| 1�n=0 (9)

locally uniformly in C� "2.

Remark 4. Theorem 3 means that the difference Rn(z)&w(z) rn(z)
tends to zero faster than any geometric progression as n tends to infinity.
But note that rn(z) is the error of the ordinary diagonal PA of order n of
the simplest function

f (z)=|
2

dt
z&t

, 2=[&1, 1], (10)

with the Lebesgue measure dt. It is natural to expect that in general the
simplest function (10) is approximated better by PAs than the function (4)
with more general weights w. Consequently, if what we expect is true,
due to (9) the function (4) with a general entire function w must be
approximated better by PTAs of order n than by ordinary PAs of the same
order. The analogous result may be formulated aslo for functions of the
form (6).
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3. PROOFS

Theorem 1 is a special case of Theorem 2.

Proof of Theorem 2. We first prove that (5) holds in C� "Co(supp +). By
the definition of f and of the PTAs we obtain

Qn(z) f (z)=Qn(z) |
w(t)
z&t

d+(t)=|
(Qn(z)&Qn(t))+Qn(t)

z&t
w(t) d+(t)

=Pn&1(z)+|
Qn(t) w(t)

z&t
d+(t)

since the polynomial part of the Laurent expansion at infinity of the last
integral is zero. Hence,

f (z)&
Pn&1(z)

Qn(z)
=

1
Qn(z) |

Qn(t)w(t)
z&t

d+(t). (11)

In our estimate of the right-hand side of (11) we shall use the following
inequality on Qn(z) (see [7], p. 4)

lim inf
n � �

|Qn(z)| 1�n�e g0(z) (12)

locally uniformly in C"Co(supp +). Since Qn is the n th orthogonal polyno-
mial with respect to +, the other factor in the right-hand side of (11) can
be written in the following form, where ?n&1(t) is any polynomial in t of
degree at most n&1,

|
Qn(t)w(t)

z&t
d+(t)=| Qn(t) _w(t)

z&t
&?n&1(t)& d+(t). (13)

We choose ?n&1(t), depending on z, so that it approximates w(t)�(z&t) as
good as possible on supp + in the supremum norm. Then we use the
following lemma.

Lemma 1. Let w be an entire function and K a compact subset of C.
Introduce the approximation error

En(z)=inf
?n

sup
t # K } w(t)

z&t
&?n(t) } ,
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where the infimum is taken over all polynomials ?n of degree at most n. Then

lim sup
n � �

En(z)1�n�e&g0(z) (14)

locally uniformly in the unbounded component 0 of C� "K.

Before we comment on the proof of the lemma we finish the proof of
Theorem 2. From (13) we get by using the notation of the lemma with
K=supp + and the fact that Qn is the orthonormal polynomial of degree
n with respect to +,

} | Qn(t) w(t)
z&t

d+(t) }�En&1(z) | |Qn(t)| d+(t)

�En&1(z) | ( |Qn(t)|2+1) d+(t)=En&1(z) } (1++(C)).

If we use the lemma on this estimate and combine this with (11) and (12),
we obtain (5).

The proof of (7) is the same as the proof of (5) except that (12) is
replaced by (see [1], Theorem 1)

lim sup
n � �

|Qn(z)| 1�n�e g0(z) everywhere in 0. (15)

Remark 5. There is a version of (15) (see [1], Theorem 1$) giving
uniform convergence in a neighbourhood of an arbitrary point of 0. That
gives a corresponding version of (7) with uniform convergence.

Proof of Lemma 1. This lemma is well-known (see [8], p. 154 and 85
or [5], p. 74) except maybe the complication caused by the parameter z.
Because of that we only sketch the proof and refer to [8] or [5] for
details.

Step 1. First we consider the case when K has positive logarithmic
capacity and is a regular set in the sense that 0 has a classical Green func-
tion g0(z). We introduce the level curves

C\=[s # C: g0(s)=log \], \>1.

Let z (n)
j , 0� j�n, be the Fekete points on K and ?n( } )=?n( } , z) the inter-

polation polynomial of degree n interpolating at the Fekete points to
the function F( } )=F( } , z) defined by F(t, z)=w(t)�(z&t). Introduce
|n(t)=>n

j=0 (t&z (n)
j ).
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By Hermite's interpolation formula

F(t, z)&?n(t, z)=
1

2?i |CR

|n(t)
|n(s)

}
F(s, z)
s&t

ds,

for t # K, z # 0, where 1<R<e g0(z). Notice that for each fixed z # 0, F( } , z)
is analytic inside C\ with \=exp[g0(z)]. Since the error F(t, z)&?n(t, z)
depends on the parameter z in a simple way, we can use Hermite's formula
essentially as in [8] or [5] to complete the proof.

Step 2. We now treat the case when K is an irregular set or a set of
capacity zero. Fix z # 0 and a compact set F such that z # F/0. We
exhaust 0 by an increasing sequence S of open regular sets. If cap K>0 we
choose $>1 and a set 01 in this sequence S so that 01 #F and
g0<g01

+log $ on F. If cap K=0 we choose N>0 and 01 in S so that
01 #F and g01

>N on F. We then use Step 1 with K replaced by C"01 .
By choosing $ close to 1 and N large, we obtain the lemma.

Remark 6. In the proof below of Theorem 3 we need a version of the
lemma where w(t)�(t&z) is replaced by F(t, z)=(w(t)&w(z))�(t&z). In
this case F( } , z) is an entire function and the right-hand side of (14) may
be replaced by zero.

Remark 7. There is a version of the lemma and of Theorem 2 also when
w is not an entire function. Suppose that w is analytic inside CR , R>1, and
that z # 0. Then (5) and (7) hold if z is inside CR . Otherwise the right-hand
side of (5) and (7) shall be replaced by R&1 } exp[&g0(z)].

Proof of Theorem 3. Let f be given by (4), use (11) and consider

Rn(z)= f (z)&
Pn&1(z)

Qn(z)
=

1
Qn(z) |2

Qn(t) w(t)
z&t

dt

=
1

Qn(z) |2

Qn(t)(w(t)&w(z))
z&t

dt+
w(z)
Qn(z) |2

Qn(t)
z&t

dt. (16)

By the same arguments as in the proof of Theorem 2 combined with
Remark 6 we get

lim sup
n � � } 1

Qn(z) |
2

Qn(t)(w(t)&w(z))
z&t }

1�n

=0 (17)
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locally uniformly in C� "2. Now we note that

rn(z)=
1

Qn(z) |
2

Qn(t)
z&t

dt. (18)

Theorem 3 follows from (16), (17) and (18).
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